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THE SLOW BURNING CONDITION IN A DUST-GAS MIXTURE 

B. M. Smirnov UDC 536.46 

i. Combustion-wave propagation in a gas phase is determined not only by the reaction 
rate at the maximum temperature of the gas mixture but also by heat transfer through the gas. 
A rigorous mathematical theory exists [1-5], which relates the wave propagation speed to the 
parameters of the chemical and thermal processes. In particular, the Arrhenius temperature 
dependence for the rate constant k, k % exp(-Ea/T), implies that the wave speed u is 
related to the gas temperature T m after combustion as follows, where E a is the activation 
energy [i, 2]: 

u ~ e x p ( - - E a / 2 T m )  . (ioi) 

In the burning of a dust--gas mixture, there is an additional process that influences the 
speed: the emission from the dust particles. If the transverse dimension of the combustion 
zone is small by comparison with the photon mean free path, the contribution from dust emission 
to the heat balance is related to the wave speed. The less the speed, the longer the time 
spent at the maximum temperature and the greater the dust radiation heat loss. In (i.i), 
the speed is very much dependent on the maximum temperature, so the propagation conditions 
markedly affect the contribution from emission to the heat balance. This leads to two modes 
of burning in a dust-gas mixture [6]. In the fast mode, the emission makes a comparatively 
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small contribution, so the maximum temperature is determined by the initial amount of chemical 
energy in the gas, which is used in heating it. The gas temperature in the combustion zone 
is high in that state, and the combustion wave propagates quite rapidly, so the state is 
analogous to that of burning in a gas mixture. 

The slow mode is specific for a dust-gas mixture. In that case, some fraction of the 
chemical energy is consumed in the dust emission, so the maximum temperature in the combustion 
wave is somewhat less than that in the fast mode. Because of the sharp temperature dependence 
of (i.i), the wave speed in the slow mode is much less than in the fast one. Here we consider 
calculating wave parameters for the slow mode, and the use of the formulas for the combustion 
of coal dust in air. 

2. Consider the propagation of a combustion wave in a dust-gas medium. For simplicity 
we assume that a dust particle is spherical and of radius r0, while there are n particles in 
unit volume. It is realistic to assume that a particle is in equilibrium with the surrounding 
gas, i.e., 

>> (2 .1 )  

where �9 i s  t h e  c o m b u s t i o n  t ime  and • i s  t h e  t h e r m a l  d i f f u s i v i t y  o f  t h e  g a s ;  t h e  r i g h t  s i d e  
i s  t h e  c h a r a c t e r i s t i c  t ime  f o r  h e a t  t o  p r o p a g a t e  by a d i s t a n c e  o f  t h e  o r d e r  o f  t h e  p a r t i c l e  
s i z e .  I n  p a r t i c u l a r ,  f o r  a i r  a t  a t m o s p h e r i c  p r e s s u r e  and a t  a b o u t  1000~ w i t h  r 0 % 10 ~m, 
t h e  r i g h t  s i d e  o f  ( 2 . 1 )  i s  a b o u t  10 -s  s e c .  C o n d i t i o n  ( 2 . 1 )  i s  obeyed  w i t h  a c o n s i d e r a b l e  
marg in  in  t h e  d e t a i l e d  c a s e s  t o  be c o n s i d e r e d  below o f  d u s t - g a s  m i x t u r e s  a t  a t m o s p h e r i c  
p r e s s u r e .  

The r e l a t i o n  be tween  t h e  p a r t i c l e  t e m p e r a t u r e  T and t h e  t e m p e r a t u r e  o f  t h e  s u r r o u n d i n g  
gas  Tg can be found from t h e  b a l a n c e  e q u a t i o n  f o r  a p a r t i c l e .  I f  we n e g l e c t  t h e  r a d i a t i o n  
i n c i d e n t  on t h e  p a r t i c l e ,  t h i s  e q u a t i o n  i s  

% q(T), ( 2 . 2 )  (T -- Tg)+ a~T ~ = -g- 

where K is the thermal conductivity of the gas and q(T) is the heat production rate in 
combustion per unit particle volume*; a, particle grayness; and o, Stefan's constant. The 
first term on the left in (2.2) is the" heat flux between the particle and the surrounding 
gas due to thermal conduction in the gas, while the second is the radiation flux from the 
particle. On the right, we have the heat flux produced by particle combustion. 

One naturally represents the temperature dependence of the heat production rate during 
combustion as an Arrhenius law: 

q(T) = qo exp (--Ea/T),  ( 2 . 3 )  

where E a i s  t h e  a c t i v a t i o n  e n e r g y .  The t e m p e r a t u r e  Tcr  a t  which  t h e  e n e r g y  p r o d u c t i o n  by 
c o m b u s t i o n  becomes e q u a l  t o  t h e  r a d i a t i o n  l o s s  i s  o f  f u n d a m e n t a l  s i g n i f i c a n c e :  

F0 
-$ q (Tcr) = ac~T~ ( 2 . 4 )  cr 

At t h i s  p a r t i c l e  t e m p e r a t u r e ,  t h e  v a l u e  i s  t h e  same as  t h a t  o f  t h e  s u r r o u n d i n g  g a s .  

We now examine t h e  h e a t - b a l a n c e  e q u a t i o n  f o r  a d u s t  p a r t i c l e  in  t h e  r a n g e  T - Tcr  << T; 
we have  

(r- rg) = a r{,(e - I), (2.5) 

where a = Ea/T~r; aT = T - Tcr; it follows from (2.5) that emission from the particles con- 

sumes a fraction e -aST of the energy produced by particle combustion, so a fraction 1 - e -~aT 
goes to heat the gas. The gas is heated not only in the region around the particle but also 
in adjacent regions because of thermal conduction. 

*This characteristic is convenient since the results can be used subsequently for the burning 
of porous coals, where the combustion occurs throughout the volume. If the process occurs 
only at the surface of the particles, it is convenient to introduce another characteristic: 

r0q/3. 
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On this basis, we use a simple model in which the main heat production in the wave occurs 

at the maximtun temperature. Let AH be the enthalpy change in unit mass of gas on heating, 
while Q is the chemical energy per unit mass of gas, which is released by combustion. Then 

the above gives us that 

where T m is the maximum temperature in the wave. The enthalpy change in unit mass of gas 

on heating is 

AH = S C pdT 
T O 

where is the specific heat, p is the mass density of the mixture, and T O is the temperature 
ahead :~ the wave front. For simplicity we assume that Cp and p are independent of tempera- 
ture, so AH = cp(T m - To). Then we get a relation between the chemical energy Q consumed and 

the maximum temperature T m in the wave: 

%(r,~ - to) ( 2 . 6 )  
Q = i --exp [-- a (T~--Tcr)]" 

Figure 1 shows the dependence of (2.6) for Q/cp on Tm, which shows that for Q > Qmin, when 
there is a combustion wave, one can get two different modes of combustion with the same 
stored energy. In the case Q >> Qmin, these modes differ in physical nature. The slow 
mode (region i) occurs near Tcr, and most of the energy loss is by particle radiation~ In 
the other mode (region 2), the radiation losses are relatively small, when most of the energy 
goes to heat the gas.* 

3. In deriving (2.6) we have assumed that the radiation from the particles leaves the 
system freely, which is so if the width of the combustion zone 5x (the region in which the 
particles burn) is small by comparison with the photon mean free path: 

>> Ax. ( 3 . 1 )  

In other words, the combustion region is optically transparent. This is a general property 
of slowly propagating combustion waves in dust--gas mixtures. A proof of this is given below. 

The ratio of the combustion-region width to the photon free path is 

Ax/~ = uT/~, (3~ 

w h e r e  u i s  c o m b u s t i o n  wave s p e e d  and  �9 i s  t h e  c h a r a c t e r i s t i c  c o m b u s t i o n  t i m e .  C l o s e  t o  T c r ,  
the power available from an individual dust particle is 4~r~aoT~r by radiation; these radia- 

tive losses per unit volume of mixture are less than the stored energy Qp per unit volume, so 

2 4 Qp>4~roa~TcrnT~ 

where n is the number of particles in unit gas volume. We use the expression for the photon 
mean free path in the mixture 

and the above to get from (3.2) that 

Ax/~ .< uQp/( 4GT~r) = U/Umax. ( 3 . 3  ) 

It follows from (3.3) that the combustion zone is optically transparent for a flow wave. 
Figure 2 gives values of 

*In fact, the combustion reaction becomes different as the temperature rises. Firstly, when 
the combustion is rapid, the rate is limited by the rate of arrival of reacting molecules at 
the particles, so the combustion occurs in diffusion mode. Secondly, when there is vigorous 
combustion, only part of the particle volume is used. These factors and others restrict the 
rate of increase in q(T) with temperature, so it may be that the radiation losses are im- 
portant. However, this occurs at higher temperatures and therefore does not influence our 
conclusions. 
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corresponding to the combustion of a coal-air mixture at atmospheric pressure. Using the 
energy content Q = 2.2 kJ per gram of air, which corresponds to the combustion with an excess 
coal content and the formation of 50% CO and 50% CO2, we get from Fig. 2 that Uma x ~ 102-103 
cm/sec for a combustion temperature in the region of 1000-1500~ The slow mode corresponds 
to wave speeds of the order of cm/sec, i.e., the combustion zone is certainly transparent. 

We note that the condition for free radiation escape from the combustion zone together 
with (3.1) requires that 

%>>Ay, (3.4) 

where Ay is the transverse dimension of the combustion zone.* If (3.4) is not obeyed, the 
radiation emitted by the particles is returned, which leads to violation of (2.6) and a 
deviation from the conclusions about the slow mode derived from (2.6). We further consider 
the one-dimensional case of a combustion wave, which corresponds to 

Ay>> hx, (3.5) 

i.e., the transverse dimension of the combustion zone is large in comparison to the width 
of the combustion front. 

4. Formula (2.6) has been obtained with model assumptions, which do not incorporate 
various factors: the temperature distribution in the combustion zone, the effects of radiation 
on adjacent regions, incomplete combustion, and so on. To elucidate the combustion-wave 
characteristics, it is desirable to eliminate the model assumptions and to examine the thermal 
processes in the wave and the related temperature profile. We used the two-temperature 
approximation, in which the mixture at any point is described by the dust temperature T 
and the gas temperature Tg, which are related by (2.2). This applies if the heat has time 
to propagate in the gas in the gaps between adjacent particles within the characteristic 
heat-production time, and it requires obedience to a condition more stringent than (2.1): 

>> n-2/3X-1. Estimates show that this condition is obeyed for the calculations made 
below. Then the energy-balance equation for the combustion wave is 

82~g ! gd rg  mc d dT 7;y-u  c  +  vz] (4.1) 

where  c~ ~ and cg a r e  t h e  s p e c i f i c  h e a t s  o f  d u s t  and g a s ;  Pd and pg, mass d e n s i t i e s  o f  d u s t  and 
P 

gas  c o r r e s p o n d i n g l y ;  m, o f  d u s t  pe r  u n i t  mass o f  g a s ;  and F, h e a t  p r o d u c t i o n  r a t e  g o i n g  t o  
h e a t  u n i t  volume o f  t h e  m i x t u r e .  E q u a t i o n  ( 4 . 1 )  r e f l e c t s  t h e  f a c t  t h a t  t h e  h e a t  in  t h e  
c o m b u s t i o n  wave p r o p a g a t e s  t h r o u g h  t h e  m i x t u r e  by t h e r m a l  c o n d u c t i o n  in  t h e  g a s ,  w h i l e  t h e  
r a d i a t i o n  e s c a p e s  f r e e l y  f rom t h e  r e g i o n .  

We w r i t e  o u t  t h e  e x p r e s s i o n  f o r  t h e  h e a t  p r o d u c t i o n  r a t e  in  u n i t  volume F used  in  h e a t i n g  
t h e  g a s .  Th i s  q u a n t i t y  i s  t h e  d i f f e r e n c e  be tween  t h e  h e a t  p r o d u c t i o n  due t o  t h e  c o m b u s t i o n  
and t h e  l o s s e s  due t o  r a d i a t i o n ,  and in  a c c o r d a n c e  w i t h  ( 2 . 2 )  

4 o 4 
F = T n  oq(T) n - -a~(T  4 -  To) 4~r~n=--~L 3a 

Here To i s  t h e  t e m p e r a t u r e  o f  t h e  s u r r o u n d i n g  gas  a t  a d i s t a n c e  o f  t h e  o r d e r  o f  t h e  p h o t o n  mean 
f r e e  p a t h  o r  t h e  t e m p e r a t u r e  o f  t h e  w a l l s  o f  t h e  s y s t e m  c o n t a i n i n g  t h e  m i x t u r e .  We assume 
t h a t  t h i s  t e m p e r a t u r e  i s  t h e  same as t h e  gas  t e m p e r a t u r e  ahead  o f  t h e  c o m b u s t i o n  wave.  

We w r i t e  an e x p r e s s i o n  f o r  t h e  s p e c i f i c  h e a t  p r o d u c t i o n  r a t e  in  a more c o n v e n i e n t  form 
by i n t r o d u c i n g  <(T) as  t h e  t ime  in  which  t h e  s t o r e d  e n e r g y  i s  u s e d .  We c o n s i d e r  t h e  c a s e  
where  t h e  c o m b u s t i o n  o c c u r s  w i t h  an e x c e s s  o f  f u e l  ( c o a l ) ,  i . e . ,  t h e  e n e r g y  r e l e a s e  i s  
d e t e r m i n e d  by t h e  amount o f  o x i d i z i n g  a g e n t  ( a t m o s p h e r i c  o x y g e n ) .  We assume t h a t  t h e  h e a t  
p r o d u c t i o n  r a t e  i s  p r o p o r t i o n a l  t o  t h e  unused  p a r t  o f  t h e  o x i d a n t ,  which  g i v e s  

F = Q~c _ .4~ ( r '  -- r ~ )  ( 4 . 2 )  

where Q i s  t h e  s t o r e d  c h e m i c a l  e n e r g y  p e r  u n i t  mass o f  gas  and c i s  t h e  unused  f r a c t i o n  o f  
t h e  o x i d a n t .  Then a c c o r d i n g  to  t h e  d e f i n i t i o n  o f  ( 2 . 4 )  we have  

*In accordance with whether this condition is obeyed or not, experiment gives different values 
for the wave speed and the minimal dust concentration allowing the fast mode of combustion [7]. 
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System (2.2) and (4.1) describe the temperature distributions for the gas and dust in 
the combustion zone and apply if thermal equilibrium is rapidly established near a particle, 

which corresponds to obedience to (2.1). 

In the case of the slow mode, we consider the case where the temperatures of gas and 
particle are similar and the amount of dust in the gas is relatively small, so the dust 
makes only a small contribution to the specific heat. The scope for using the one- 
temperature approximation is determined by the smallness of the parameter 

E a F o 
= (T - = 

where AT = T m - Tcr, while as the temperature we take the maximum temperature in the wave, 
at which thetemperature difference is maximal. Then $ = 1 corresponds to thermal explosion 
in the dust particles leading to acceleration in the particle combustion and conversion of 
the combustion to the fast mode. The slow mode occurs only for ~ < I, which justifies us 
in using the one-temperature approximation, which provides analytic expressions for the wave 
parameters. 

System (2.2) and (4.1) can be used in the one-temperature approximation as a single equa- 
tion for energy transport in the wave, which is derived from (4.1) with T = Tg: 

d2T dH 
~ - ~ - ~  ~ + F(T) = O, 

T .~ d 
where H(T)= "J" [c~ + mc~)dT is the enthalpy per unit mass of gas. 

To find the wave speed, we use a standard method developed in [i-3]. 

We introduce a new function Z = dT/dx and reduce the order of the equation: 

xZdZ/dT --  uZpgdH/dT + F(T) = O, 

Z( To) = Z( T~) = O. 

(4.3) 

We substitute (4.2) into this equation for the specific production rate going to heat the 
gas. If the combustion rate is proportional to c, this quantity satisfies dc/dt = -c/c; 
as dt = dx/u = dT/Zu, then 

Also, cdT = --ZuTdc. 

[ c = e x p  - -  j Z u ~ / .  

To J 

We use this ~n (4.3) on the basis of (4.2) to reduce (4.3) to the form 

( T4- QPg= (4.5) d Z =  ~ d H  + 4~ d T - - =  •  
• ~,xZ 

Then (4.5) is an equation for the temperature profile in a one-dimensional combustion 
wave in the one-temperature approximation, i.e., when the dust temperature is close to the gas 
one. From (4.5) we can get the relation between the combustion-wave parameters in a dust--gas 
mixture; it must be solved with the boundary conditions 

Z(T0) = Z(Tm) = 0. 

Also, with this assumption, we get (3.3) for T m - Tcr << Tcr that 

(4.6) 

c(Tm) = e x p  [--~(Tm-- Tcr)]. (4~ 

5. The energy transport equation of (4.5) can be used with the boundary conditions of 
(4.6) and (4..7) to determine the wave speed and maximum temperature. We use the traditional 
approach [1-3] based on dividing the regions where the reaction mainly occurs, i.e., the 
heat production, and where the energy loss occurs. Correspondingly, we assume that the heat 
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TABLE 1 

eZ(Tm--Tcr) b a(Trn--Tcr a(Tm--Tcr ) b ~(Tm--Tcr ) b 

�9 1 , 0  
i,2 
i ,6 

0,209 2,0 
[),268 2,5 
0,38t 3,0 

t 

, b 

0,484 I I 
0,600 
0,703 

3,5 
4,0 
5,0 

0,795 
0,879 
t , 0 2 5  

6,0 
8,0 

10,0 

1,150 
1,355 
t ,52i 

TABLE 2 

No. Coal qo, 10,.W/g Ea, kca l /mole  Source 

Semianthracite coke 
Fired coal 
Activated birch charcoal 

2O 
8 

40 
32 

35 
34 

[8] 
19] 

It0] 
1tt] 

Note: The parameters in (2.4) for a specific 
heat production rate are given. 

production by combustion occurs only in a region with temperatures close to T m. Outside 
that region, the last term in (4.5) can be neglected. 

This model assumption enables one to solve (4.5) and to link up the solutions at the 
boundaries between the regions,namely to determine the wave speed u and the proportion of the 
stored energy going to heat the gas: 

t,~r~V~ (5.1)  
u = [~  _ o-~(~-~r)]  VEaQ0pf (r~) bl/, ; 

hill [ l  - -  e-~(  Tm-r c~] ~ 0'42aTSEa 
T = q (r~) %~0 V~" (5.2)  

H e r e  Q0 i s  t h e  t o t a l  c h e m i c a l  e n e r g y  p e r  u n i t  m a s s  o f  g a s  a n d  q i s  t h e  h e a t  p r o d u c t i o n  r a t e  
p e r  u n i t  m a s s  o f  d u s t .  The n u m e r i c a l  p a r a m e t e r  b ~ 1 a r i s e s  on c o m p a r i n g  ( 4 . 4 )  a n d  ( 4 . 7 )  a n d  
i s  d e t e r m i n e d  by  

V ' ~ e ,  = a ( r m  - rc r ) .  

Table 1 gives numerical values for this parameter, while in the range 2 < ~(T m 
the solution to (5.3) can be approximated as b = 0.12 + 0.58 in [a(T m - Tcr)] 
with an accuracy better than 10%. 

According to (5.1), 

u N T-1/2(Tm) N exp ( - -Ea /2Tm) ,  

( 5 . 3 )  

-- Tcr) < I0 

which agrees with (i.i) and is a general result from gas combustion theory. Also, (5.2) 
incorporates radiative losses in the combustion zone to the heated region ahead of the wave, 
where the reaction is slow (second term Sn (5.2)), as well as incomplete oxidant use. The 
criterion for using this formula is related to obedience to the condition a(T m - Tcr) >> i. 

6. We use the formulas to examine wave propagation in coal-air mixtures at atmospheric 
pressure, which reveals the regularities in the slow combustion of an actual mixture. We 
consider porous coals, in which the reaction occurs throughout the volume. Table 2 gives the 
corresponding heat production rates. These results are not very accurate, and sometimes they 
have been used outside the temperature range for which they were obtained. Nevertheless, 
the statistical data indicate that the conclusions drawn from the set of measurements are 
correct. 
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Figures 3-6 show the calculations on a coal--air mixture based on the above formulas and 
the production-rate data of Table 2. Curves 1-4 correspond to the cases in Table 2o Figure 
3 gives the relation between the particle radius and critical temperature for given specific 
heat-production rates. It is evident from Fig. 4 that the slow mode is not realized for 
large particles, and instead, thermal explosion (dashed lines) goes over to rapid combustion. 
Figure 5 shows the propagation rate calculated from (5.1). This is relatively small for the 
slow mode~ being of the order of cm/sec for particles with r 0 ~ i0 pm. The combustion zone 
is also narrow, namely a fraction of a centimeter. 

The specific stored energy in the fuel is dependent on the degree of combustion of the 
carbon. Table 3 gives heat-production parameters for limiting modes of combustion in the 
presence of excess coal (Figs. 3-6) and also for stoichiometric coal contents in air. All 
the calculations were based on the parameters corresponding to case 3 in Table 3, ioe., the 
intermediate type of coal combustion. 

Figure 6 shows the dependence of the specific energy in the mixture on the maximum 
temperature in the combustion zone and the fraction of the stored energy going to heat the 
gas for two detailed cases. The dependence of the specific energy on the maximum combustion 
temperature is as in Fig. i. However, above a certain T, thermal explosion in the dust can 
occur, which converts the system to the fast mode~ 

The calculations show that coal dust burning in air can give rise to the slow mode with a 
maximum temperature in the combustion zone somewhat exceeding 1000~ This corresponds to a 
wave speed of the order of cm/sec and a width for the combustion zone of a fraction of a centi- 
meter. For large particles, this does not occur because of thermal explosion, which raises 
the particle temperature sharply ~nd transfers the system to the fast mode. Increase in 
the temperature ahead of the wave also produces thermal explosion in smaller particles. 

The stability of the slow mode under perturbations is also important. The fast mode 
is more stable. In fact, in the slow mode, any local energy input raises the temperature 
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TABLE 3 

No. 
Combustion 

products 

CO 
CO~ 
50% CO, 
50% CO2 

I Minimum amount of 
per oxygen per gram of/. c0al per gram of air 

un  complete use oi  
molecule air  ld oxygen, g~ 

e v  

2,26 t,6 0,t6 
4,02 ~ 2,8 0,08 

3,t4 2,2 0,t2 

and accelerates the combustion, which in turn leads to less radiation losses and additional 
heating. Therefore, the slow mode is metastable. Analysis of the stability by traditional 
methods [12] shows that there are two possible instabilities involving transition to the 
fast mode. One of them is thermal explosion in the particles, which occurs for large sizes 
(Figs. 3-6), while the other is due to local inhomogeneities, which lead to breakaway from 
the slow mode in individual regions and propagation of the instability to the whole of the 
space. This mechanism has a bearing on real systems. Nevertheless, there is a wide para- 
meter range where the slow mode in a dust-gas mixture can occur. 
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